雅虎香港 搜尋

搜尋結果

  1. 指数函数 (英語: Exponential function )是形式為 的數學 函数 ,其中 是 底數 (或稱 基數 , base ),而 是 指數 ( index / exponent )。 現今 指數函數 通常特指以 為底數的指數函數(即 ),為 数学 中重要的函数,也可寫作 。 这里的 是数学常数,也就是 自然对数函数的底数 ,近似值为 ,又称为 欧拉 数。 作为 实数 变量 的函数, 的 图像 总是正的(在 轴之上)并递增(从左向右看),它不触及 轴,尽管它可以任意程度的靠近它,即 轴是这个图像的水平 渐近线 。 一般的说, 变量 可以是任何实数或 复数 ,甚至是完全不同种类的 数学对象 。 它的 反函数 是定义在所有正数 上的 自然对数 。

  2. 本页面最后修订于2022年11月6日 (星期日) 11:10。 本站的全部文字在知识共享 署名-相同方式共享 4.0协议 之条款下提供,附加条款亦可能应用。 (请参阅使用条款) Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基 是维基媒体基金会的商标。

  3. 指數函數 (英語: Exponential function )是形式為 的數學 函數 ,其中 是 底數 (或稱 基數 , base ),而 是 指數 ( index / exponent )。 現今 指數函數 通常特指以 為底數的指數函數(即 ),為 數學 中重要的函數,也可寫作 。 這裡的 是數學常數,也就是 自然對數函數的底數 ,近似值為 ,又稱為 歐拉 數。 作為 實數 變量 的函數, 的 圖像 總是正的(在 軸之上)並遞增(從左向右看),它不觸及 軸,儘管它可以任意程度的靠近它,即 軸是這個圖像的水平 漸近線 。 一般的說, 變量 可以是任何實數或 複數 ,甚至是完全不同種類的 數學物件 。 它的 反函數 是定義在所有正數 上的 自然對數 。

  4. 本頁面最後修訂於2022年11月6日 (星期日) 11:10。 本站的全部文字在創用CC 署名-相同方式分享 4.0協議 之條款下提供,附加條款亦可能應用。 (請參閱使用條款) Wikipedia®和維基百科標誌是維基媒體基金會的註冊商標;維基 是維基媒體基金會的商標。 維基 ...

  5. 欧拉公式 (英語: Euler's formula ,又稱 尤拉公式 )是 複分析 领域的公式,它将 三角函数 與 复指数函数 关联起来,因其提出者 莱昂哈德·歐拉 而得名。 歐拉公式提出,對任意 实数 ,都存在. 其中 是 自然对数的底数 , 是 虚数單位 ,而 和 則是 餘弦 、 正弦 對應的 三角函数 ,参数 則以 弧度 为单位 [1] 。 這一複數指數函數有時還寫作 cis x (英語: cosine plus i sine ,余弦加 i 乘以正弦)。 由於該公式在 為 複數 時仍然成立,所以也有人將這一更通用的版本稱為歐拉公式 [2] 。 歐拉公式在数学、物理和工程领域应用广泛。 物理学家 理查德·费曼 将歐拉公式称为:“我们的珍宝”和“数学中最非凡的公式” [3] 。

  6. 維基百科,自由的百科全書. 微積分基本定理 (英語: Fundamental theorem of calculus )描述了 微積分 的兩個主要運算── 微分 和 積分 之間的關係。 定理的第一部分,稱為 微積分第一基本定理 ,此定理表明:給定任一連續函數,可以(利用積分)構造出該函數的反導函數。 這一部分定理的重要之處在於它保證了 連續函數 的 反導函數 的存在性。 定理的第二部分,稱為 微積分第二基本定理 或 牛頓-萊布尼茨公式 ,表明某函數的 定積分 可以用該函數的任意一個反導函數來計算。 這一部分是微積分或數學分析中相當關鍵且應用很廣的一個定理,因為它大大簡化了定積分的計算。 [1] 該定理的一個特殊形式,首先由 詹姆斯·格里高利 (1638-1675)證明和出版。

  7. 数学中,有一组常在数学表达式中出现的符号。数学工作者一般熟悉这些符号,使用时不一定会加以说明。但绝大多数常见的符号都有相应标准 [1] 或Unicode符号说明 [2] 等加以规范。 下表列出很多常见数学符号,并附有名称、读法和应用领域。第三栏为非正式定义,第四栏提供简单例子。