雅虎香港 搜尋

  1. GSM - Wikipedia

    en.wikipedia.org/wiki/GSM

    The GSM logo is used to identify compatible devices and equipment. The dots symbolize three clients in the home network and one roaming client. The Global System for Mobile Communications (GSM) is a standard developed by the European ...

  2. GSM - 維基百科,自由的百科全書

    zh.wikipedia.org/zh-hk/GSM

    GSM. 維基百科,自由的百科全書. 跳至導覽 跳至搜尋. 全球流動通訊系統 ( G lobal S ystem for M obile Communications),即 GSM ,又稱 泛歐數碼式流動電話系統 ,是當前應用最為廣泛的 流動電話 標準。. 全球超過200個國家和地區超過10億人正在使用GSM電話。. ...

  3. GSM frequency bands - Wikipedia

    en.wikipedia.org/wiki/GSM_frequency_bands

    GSM frequency bands or frequency ranges are the cellular frequencies designated by the ITU for the operation of GSM mobile phones and other mobile devices. GSM frequency bands GSM band ƒ (MHz) Uplink (MHz) (mobile to base) Downlink (MHz) (base ...

  4. GSM - Wikipedia

    nl.wikipedia.org/wiki/GSM

    ... bedoeld om de verschillen in betekenis of gebruik van GSM inzichtelijk te maken.Op deze pagina staat een uitleg van de verschillende betekenissen van GSM en verwijzingen daarnaartoe. Bent u hier via een pagina in Wikipedia ... ...

  5. GSM – Wikipedia

    de.wikipedia.org/wiki/GSM

    gsm steht für: Guatemalanische Gebärdensprache (ISO-639-3-Code), Gebärdensprache grams per square meter, englisch für Gramm pro Quadratmeter (g/m²), Maßeinheit der flächenbezogenen Masse Siehe auch: ...

  6. GSM – Wikipedia

    sv.wikipedia.org/wiki/GSM

    GSM (Globalt system för mobil kommunikation; ursprunglig akronym: groupe spécial mobile), är ett andra generationens (2G) mobiltelefonisystem, det vill säga ett digitalt system, kommersialiserat 1991, [1] som har ersatt de analoga (d.v.s. första ...

  7. GSM — Wikipédia

    fr.wikipedia.org/wiki/GSM

    .gsm, un format de données et un nom d'extension du nom des fichiers son pour l'encodage de la parole ; grande section maternelle une section de l' école maternelle en France ; Grams per square metre (en français, le gramme par mètre ...

  8. GSM - Wikipedia

    ja.wikipedia.org/wiki/GSM

    GSMは世界のほとんどの国・地域で使用されているが、 日本 韓国 北朝鮮 ツバル では使用されていない。 2008年 現在、世界の携帯電話端末市場の82%はGSM方式であり、携帯電話方式の中で最も使われている。� 世界の212ヵ国で約20億人が利用している。� ...

  9. Gsm (communicatie) - Wikipedia

    nl.wikipedia.org/wiki/GSM_(communicatie)

    Gsm is een standaard voor digitale mobiele telefonie. De afkorting staat voor global system for mobile communications, eerder voor Groupe Spécial Mobile. Gsm wordt beschouwd als de tweede generatie mobiele telefonie (2G). Gsm is de meest ...

  10. Global System for Mobile Communications – Wikipedia

    de.wikipedia.org/wiki/Global_System_for_Mobile_Communications
    • Zusammenfassung
    • Anwendung
    • Historisches
    • Einführung
    • Vorteile
    • Technik
    • Funktion
    • Aufbau
    • Nutzung
    • Sicherheit
    • Funktionsweise
    • Überblick
    • Eigenschaften
    • Entwicklung
    • Probleme

    Das Global System for Mobile Communications (früher Groupe Spécial Mobile, GSM) ist ein 1990 eingeführter Mobilfunkstandard für volldigitale Mobilfunknetze, der hauptsächlich für Telefonie, aber auch für leitungsvermittelte und paketvermittelte Datenübertragung sowie Kurzmitteilungen (Short Messages) genutzt wird. Es ist der erste Standard der sogenannten zweiten Generation (2G) als Nachfolger der analogen Systeme der ersten Generation (in Deutschland: A-Netz, B-Netz und C-Netz) und ist der weltweit am meisten verbreitete Mobilfunk-Standard.

    In Deutschland ist GSM die technische Grundlage der D- und E-Netze. Hier wurde GSM 1991 eingeführt, was zur raschen Verbreitung von Mobiltelefonen in den 1990er-Jahren führte. Der Standard wird heute in 670 GSM-Mobilfunknetzen in rund 200 Ländern und Gebieten der Welt als Mobilfunkstandard genutzt; dies entspricht einem Anteil von etwa 78 Prozent aller Mobilfunkkunden. Es existieren später hinzugekommene Erweiterungen des Standards wie HSCSD, GPRS und EDGE zur schnelleren Datenübertragung. Der A3-Algorithmus ist elementarer Bestandteil der Sicherheit im GSM-Netz. Er kann von jedem Netzbetreiber selbst ausgewählt werden, Details der jeweiligen Implementierung werden geheim gehalten. GSM-Ortung stellt je nach Anwendungsfall eine Alternative zum GPS dar und wird für verschiedene Dienste genutzt, unter anderem für Location Based Services, Routenplaner, Flottenmanagement für Transportunternehmen oder eine Hilfe zum Wiederauffinden eines Mobiltelefons.

    Ende der 1950er Jahre nahmen die ersten analogen Mobilfunknetze in Europa ihren Betrieb auf; in Deutschland war dies das A-Netz. Ihre Bedienung war jedoch kompliziert, und sie verfügten nur über Kapazitäten für wenige tausend Teilnehmer. Zudem gab es innerhalb Europas nebeneinander mehrere verschiedene Systeme, die zwar teilweise auf dem gleichen Standard beruhten, sich aber in gewissen Details unterschieden. Bei der nachfolgenden Generation der digitalen Netze sollte eine ähnliche Situation vermieden werden.

    Die Standardisierung von GSM wurde bei CEPT begonnen, von ETSI (Europäisches Institut für Telekommunikationsnormen) weitergeführt und später an 3GPP (3rd Generation Partnership Project) übergeben. Dort wird GSM unter dem Begriff GERAN (GSM EDGE Radio Access Network) weiter standardisiert. 3GPP ist somit für UMTS und GERAN verantwortlich.

    Die mit GSM erzielbaren Reichweiten schwanken stark, je nach Geländeprofil und Bebauung. Im Freien sind bei Sichtkontakt teilweise bis zu 35 km erreichbar. Bei größeren Entfernungen verhindert die Signallaufzeit der Funksignale eine Kommunikation zwischen Basis- und Mobilstation. Es ist allerdings mit Hilfe spezieller Tricks möglich, die Zellengröße zu vergrößern, teilweise auf Kosten der Kapazität. Anwendung findet dies in Küstenregionen. In Städten beträgt die Reichweite aufgrund von Dämpfungen durch Gebäude und durch die niedrigere Antennenhöhe oft nur wenige hundert Meter, dort stehen die Basisstationen allerdings aus Kapazitätsgründen auch dichter beieinander. Grundsätzlich gilt jedoch, dass mit GSM 900 aufgrund der geringeren Funkfelddämpfung und der größeren Ausgangsleistung der Endgeräte größere Reichweiten erzielbar sind als mit DCS 1800.

    Die digitalen Daten werden mit einer Mischung aus Frequenz- und Zeitmultiplexing übertragen, wobei Sende- und Empfangsrichtung durch Frequenzmultiplexing getrennt werden und die Daten durch Zeitmultiplexing. Das GSM-Frequenzband wird in mehrere Kanäle unterteilt, die einen Abstand von 200 kHz haben. Bei GSM 900 sind im Bereich von 890915 MHz 124 Kanäle für die Aufwärtsrichtung (Uplink) zur Basisstation und im Bereich von 935960 MHz 124 Kanäle für die Abwärtsrichtung (Downlink) vorgesehen. Die TDMA-Rahmendauer beträgt exakt 120/26 ms (ca. 4,615 ms) und entspricht der Dauer von exakt 1250 Symbolen. Jeder der acht Zeitschlitze pro Rahmen dauert somit ca. 0,577 ms, entsprechend der Dauer von 156,25 Symbolen. In diesen Zeitschlitzen können Bursts verschiedener Typen gesendet und empfangen werden. Die Dauer eines normalen Bursts beträgt ca. 0,546 ms, in denen 148 Symbole übertragen werden. Die Sendeleistung der Mobilstation bei GSM 900 beträgt max. 2 Watt und 1 Watt bei GSM 1800.[4] Die Sendeleistungen der Basisstationen für GSM 900/1800 betragen 2050/1020 Watt.[5] Die Sendeleistungen von Mobil- und Basisstationen werden nach Verbindungsaufbau je auf das notwendige Mindestmaß reduziert.[6] Die Basisstation sendet, je nach Bedarf, in den einzelnen Zeitschlitzen eines Rahmens mit unterschiedlicher Leistung. Sie sendet nur in aktiven Zeitschlitzen.[3] Die Leistungsregelung erfolgt im Abstand von Sekunden. Daneben kann das Handy, wenn nicht gesprochen wird, die Abstrahlungen unterbrechen. Der technische Grund für beide Maßnahmen ist, den Stromverbrauch zu senken und Funkstörungen in Nachbarzellen gleicher Frequenz zu reduzieren.[7] GSM-Netze sind in fünf Teilsysteme unterteilt (siehe Bild von links nach rechts): Wird ein GSM-Kanal für Datenübertragung genutzt, erhält man nach den Dekodierschritten eine nutzbare Datenrate von 9,6 kbit/s. Diese Übertragungsart wird Circuit Switched Data (CSD) genannt. Eine fortschrittliche Kanalkodierung ermöglicht auch 14,4 kbit/s, bewirkt bei schlechten Funkverhältnissen aber viele Blockfehler, so dass die Downloadrate tatsächlich niedriger ausfallen kann als mit erhöhter Sicherung auf dem Funkweg. Deshalb wird in Abhängigkeit von der Bitfehlerhäufigkeit zwischen 9,6 und 14,4 kbit/s netzgesteuert umgeschaltet (=Automatic Link Adaptation, ALA).

    Nach dem Empfangsburst schaltet das Mobiltelefon auf die um 45 MHz versetzte Sendefrequenz, und sendet dort den Burst des Rückkanals an die Basisstation. Da Downlink und Uplink um drei Zeitschlitze versetzt auftreten, genügt eine Antenne für beide Richtungen. Zur Erhöhung der Störfestigkeit kann auch das Frequenzpaar periodisch gewechselt werden (frequency hopping), so entsteht eine Frequenzsprungrate von 217 Sprüngen pro Sekunde. Zur Verringerung des Aufwands im Kernnetz und zur Verlängerung der Akku-Laufzeit wird zentral nur die Location Area erfasst, in der sich ein eingebuchtes Mobiltelefon befindet. Wo es sich innerhalb dieses Gebietes befindet, ist nicht bekannt. Um Energie und Übertragungskapazität zu sparen, meldet sich das Mobiltelefon im Standby-Betrieb (idle-mode) in vom Netz vorgegebenen Abständen (zwischen 6 Minuten und 25,5 Stunden)[10] oder beim Wechsel der Location Area beim Netz. Sobald das Netz mit dem Mobiltelefon eine Verbindung aufbauen möchte, wird dieses über alle Basisstationen der Location Area gerufen und bei Meldung die Verbindung über die Basisstation, an der das Endgerät sich meldet, aufgebaut. Dem Mobiltelefon dagegen ist genau bekannt, in welcher Funkzelle es sich befindet. Im Standby-Betrieb scannt es die Nachbarzellen, deren Trägerfrequenzen es von der Basisstation auf speziellen Informationskanälen mitgeteilt bekommt. Wird das Signal einer der Nachbarzellen besser als das der aktuellen Zelle, dann wechselt das Mobiltelefon dorthin. Bemerkt es dabei eine Änderung der Location Area, dann muss es dem Netz seinen neuen Aufenthaltsort mitteilen.

    Die Datenrate pro Zeitschlitz von 24,7 kbit/s wird in 22,8 kbit/s für die kodierten und verschlüsselten Nutzdaten des Verkehrskanals (Traffic Channel) und 1,9 kbit/s für die teilnehmerspezifischen Steuerkanäle (Control Channel) aufgeteilt. Die Kanalkodierung beinhaltet eine Reihe von Fehlerschutzmechanismen, so dass für die eigentlichen Nutzdaten noch 13 kbit/s übrig bleiben (im Fall von Sprachdaten). Eine später eingeführte alternative Kanalkodierung erlaubt die Verringerung des Fehlerschutzes zugunsten der Anwendungsdaten, da bei Datenübertragungsprotokollen im Gegensatz zur Sprachübertragung bei Bitfehlern eine Neuanforderung des Datenblocks möglich ist.

    Da viele Mobilfunkbetreiber aus verschiedenen Ländern Roamingabkommen getroffen haben, ist es möglich, das Mobiltelefon auch in anderen Ländern zu nutzen und weiterhin unter der eigenen Nummer erreichbar zu sein und Gespräche zu führen.

    Zur Verschlüsselung wird aus der zur Authentifizierung benötigten Zufallszahl RAND und dem Benutzerschlüssel Ki mit dem Algorithmus A8 ein 64 Bit langer Codeschlüssel (englisch: Ciphering Key) Kc bestimmt. Dieser Codeschlüssel wird vom Algorithmus A5 zur symmetrischen Verschlüsselung der übertragenen Daten verwendet.[11] Schon angesichts der geringen Schlüssellänge kann davon ausgegangen werden, dass die Verschlüsselung keine nennenswerte Sicherheit gegen ernsthafte Angriffe bietet. Außerdem wurde bereits durch mehrere Angriffe 2009 und 2010 auf den verwendeten Algorithmus A5/1 gezeigt, dass dieser prinzipiell unsicher ist.[12][13] Allerdings verhindert die Verschlüsselung ein einfaches Abhören, wie es beim analogen Polizeifunk möglich ist. Um eine gewisse Anonymität zu gewährleisten, wird die eindeutige Teilnehmerkennung IMSI, über die ein Teilnehmer weltweit eindeutig zu identifizieren ist, auf der Luftschnittstelle verborgen. Stattdessen wird vom VLR eine temporäre TMSI generiert, die bei jedem Location Update neu vergeben wird und nur verschlüsselt übertragen wird.

    Der Benutzer muss sich gegenüber der SIM-Karte (und damit gegenüber dem Mobilfunknetz) als berechtigter Nutzer authentisieren. Dies geschieht mittels einer PIN. Es ist auf der SIM-Karte festgelegt, ob die PIN-Abfrage deaktiviert werden kann. Wurde die PIN dreimal in Folge falsch eingegeben, wird die SIM-Karte automatisch gesperrt. Um sie wieder zu entsperren, ist der PUK (Personal Unblocking Key) erforderlich. Der PUK kann zehnmal in Folge falsch eingegeben werden bevor die SIM-Karte endgültig gesperrt wird. Das Mobilfunknetz muss sich nicht gegenüber dem Benutzer authentisieren.

    Festnetzseitig basiert der GSM-Standard auf dem ISDN-Standard und stellt deshalb ähnliche vermittlungstechnische Leistungsmerkmale bereit. Mit der Möglichkeit, Kurznachrichten (SMS, kurz für Short Message Service) zu senden und zu empfangen, wurde ein neuer Dienst geschaffen, der begeistert angenommen worden ist und mittlerweile eine wichtige Einnahmequelle für die Netzbetreiber geworden ist. Für die Sprachübertragung bei GSM wurden im Laufe der Jahre mehrere Codecs standardisiert. Die üblichen Sprachcodecs, welche typischerweise mit einer Datenrate von weniger als 20 kbit/s auskommen, führen eine der menschlichen Sprache angepasste Merkmalsextraktion durch, wodurch sie nur für die Übertragung von Sprache brauchbar sind. Musik oder andere Geräusche können sie daher nur mit geringerer Qualität übertragen. Im Folgenden werden die im GSM-Netz verwendeten Sprachcodecs kurz zusammengefasst:

    EFR arbeitet mit einer ähnlichen Datenrate wie der Full Rate Codec, nämlich 12,2 kbit/s. Durch einen leistungsfähigeren Algorithmus (CELP) wurde, gegenüber dem Full-Rate-Codec, eine bessere Sprachqualität erreicht, welche bei einem guten Funkkanal annähernd dem Niveau von ISDN-Telefongesprächen (G.711a) entspricht.

    Bei diesem Codec handelt es sich um eine Erweiterung und Optimierung des schon verfügbaren AMR-Codecsets. Wie das WB (wide band) schon vermuten lässt, wird der übertragbare Frequenzbereich von derzeit ca. 3,4 kHz auf etwa 6,4 kHz beziehungsweise 7 kHz angehoben, ohne mehr Funkressourcen zu belegen. Die Entwicklung dieses Codecs ist seit einiger Zeit abgeschlossen, und er wurde von der ITU (G.722.2) und 3GPP (TS 26.171) standardisiert. Der Codec soll durch die größere Bandbreite Sprach- und Umgebungsgeräusche besser gemeinsam übertragen können, was in lauter Umgebung eine bessere Sprachqualität ermöglicht. Ericsson hat im T-Mobile-UMTS-Netz in Deutschland im Sommer 2006 mit ausgewählten Kunden in den Städten Köln und Hamburg einen AMR-WB-Betriebstest durchgeführt. Ende 2008 wurden alle Ericsson-BSC des Telekom-Netzes für AMR-WB vorbereitet. Seit Ende 2011 können alle Endkunden der Telekom AMR-WB nutzen. AMR-WB wird in Deutschland als HD-Voice vermarktet.[15] Beides ist jedoch für viele Internet- und Multimediaanwendungen zu wenig, so dass Erweiterungen unter dem Namen HSCSD und GPRS geschaffen wurden, die eine höhere Datenrate ermöglichen, indem mehr Bursts pro Zeiteinheit für die Übertragung genutzt werden können. HSCSD nutzt eine feste Zuordnung mehrerer Kanalschlitze, GPRS nutzt Funkschlitze dynamisch für die aufgeschalteten logischen Verbindungen (besser für den Internetzugang). Eine Weiterentwicklung von GPRS ist E-GPRS. Dies ist die Nutzung von EDGE für Paketdatenübertragung.

    Die Position eines Mobiltelefons ist für den Mobilfunkbetreiber durch die permanente Anmeldung am Netz in gewissen Genauigkeitsgrenzen bekannt. Im Standby-Betrieb ist sie zumindest durch die Zuordnung zur aktuell verwendeten Location Area gegeben. Diese Information wird bei Bewegung der Mobilstation regelmäßig aktualisiert.