搜尋結果
愛因斯坦在職業生涯早期就發覺 經典力學 與 電磁場 無法相互共存,因而發展出 狹義相對論。 他又發現,相對論原理可以延伸至 重力場 的建模。 根据研究出來的一些重力理論,他於1915年發表了 廣義相對論。 他持續研究 統計力學 與 量子理論,这让他給出了粒子論與對於 分子運動 的解釋。 1917年,愛因斯坦應用 廣義相對論 來建立大尺度結構 宇宙 的模型。 [41] 阿道夫·希特勒 於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。 由於愛因斯坦是 猶太裔 人,所以儘管身為 普魯士科學院 教授,他并沒有返回德國。 1940年,他定居美國,隨後成為美國公民 [42]。
2024年5月23日 · 愛因斯坦本人在1915年證明了廣義相對論能夠解釋 水星 軌道的反常 近日點 進動 現象,其過程不需要任何附加參數(所謂「敷衍因子 (英語:Fudge factor)」) [7]。. 另一個著名的實驗驗證是由 亞瑟·愛丁頓 爵士率領的探險隊在非洲的普林西比島觀測到的 日食 時 ...
廣義相对论 (英語: General Relativity)是 現代物理 中基于 相对性原理 利用 几何 语言描述的 引力 理论。 该理论由 阿尔伯特·爱因斯坦 等人自1907年开始发展,最终在1915年基本完成。 [1] 广义相对论将经典的 牛顿万有引力定律 與 狭义相对论 加以推廣。 在广义相对论中,引力被描述为 时空 的一种几何属性(曲率),而时空的曲率则通过 爱因斯坦场方程 和处于其中的 物质 及 辐射 的 能量 與 动量 联系在一起。 在 室女A星系 中心的黑洞,此為人類首次觀測並得到確認的 黑洞 影像.
其他人也問了
愛因斯坦的相對論是什麼?
愛因斯坦的狹義相對論如何更新人們的世界觀?
愛因斯坦的理論與其他物理理論有何不同?
愛因斯坦對於光的性質與時空之間的基礎關聯有何結論?
愛因斯坦發明了什麼?
愛因斯坦場方程的解是什麼?
- 概觀
- 基本介紹
- 概念介紹
- 誕生背景
- 基本假設
- 原理
- 理論內容
- 實驗檢驗
- 第四假設
- 物理套用
廣義相對論(General Relativity) 描寫物質間引力相互作用的理論。其基礎有A.愛因斯坦於1915年完成,1916年正式發表。這一理論首次把引力場解釋成時空的彎曲。
•中文名:廣義相對論
•外文名:General Relativity
•別稱:相對論
•表達式:R_uv-1/2×R×g_uv=κ×T_uv
•提出者:阿爾伯特·愛因斯坦
•提出時間:1915年
黑洞
愛因斯坦的廣義相對論理論在天體物理學中有著非常重要的套用:它直接推導出某些大質量恆星會終結為一個黑洞——時空中的某些區域發生極度的扭曲以至於連光都無法逸出;而多大質量的恆星會塌陷為黑洞則是印裔物理學家錢德拉塞卡的功勞——錢德拉塞卡極限(白矮星的質量上限)。
引力透像
有證據表明恆星質量黑洞以及超大質量黑洞是某些天體例如活動星系核和微類星體發射高強度輻射的直接成因。光線在引力場中的偏折會形成引力透鏡現象,這使得人們能夠觀察到處於遙遠位置的同一個天體的多個成像。
引力波
廣義相對論還預言了引力波的存在(愛因斯坦於1918年寫的論文《論引力波》),現已被直接觀測所證實。此外,廣義相對論還是現代宇宙學的膨脹宇宙模型的理論基礎。
發展過程
愛因斯坦在1905年發表了一篇探討光線在狹義相對論中,重力和加速度對其影響的論文,廣義相對論的雛型就此開始形成。1912年,愛因斯坦發表了另外一篇論文,探討如何將重力場用幾何的語言來描述。至此,廣義相對論的運動學出現了。到了1915年, 愛因斯坦引力場方程發表了出來,整個廣義相對論的動力學才終於完成。
開場方程式解
1915年後,廣義相對論的發展多集中在解開場方程式上,解答的物理解釋以及尋求可能的實驗與觀測也占了很大的一部份。但因為場方程式是一個非線性偏微分方程,很難得出解來,所以在電腦開始套用在科學上之前,也只有少數的解被解出來而已。其中最著名的有三個解:史瓦西解、 雷斯勒——諾斯特朗姆解、克爾解。
三大驗證
在廣義相對論的實驗驗證上,有著名的三大驗證。在水星近日點的進動中,每百年43秒的剩餘進動長期無法得到解釋,被廣義相對論完滿地解釋清楚了。光線在引力場中的彎曲,廣義相對論計算的結果比牛頓理論正好大了1倍,愛丁頓和戴森的觀測隊利用1919年5月29日的日全食進行觀測的結果,證實了廣義相對論是正確的。再就是引力紅移,按照廣義相對論,在引力場中的時鐘要變慢,因此從恆星表面射到地球上來的光線,其光譜線會發生紅移,這也在很高精度上得到了證實。從此,廣義相對論理論的正確性被得到了廣泛地承認。 另外,宇宙的膨脹也創造出了廣義相對論的另一場高潮。從1922年開始,研究者們就發現場方程式所得出的解答會是一個膨脹中的宇宙,而愛因斯坦在那時自然也不相信宇宙會來漲縮,所以他便在場方程式中加入了一個宇宙常數來使場方程式可以解出一個穩定宇宙的解出來。但是這個解有兩個問題。在理論上,一個穩定宇宙的解在數學上不是穩定。另外在觀測上,1929年,哈勃發現了宇宙其實是在膨脹的,這個實驗結果使得愛因斯坦放棄了宇宙常數,並宣稱這是我一生最大的錯誤(the biggest blunder in my career)。 但根據最近的一形超新星的觀察,宇宙膨脹正在加速。所以宇宙常數似乎有再度復活的可能性,宇宙中存在的暗能量可能就必須用宇宙常數來解釋.
簡單地說,廣義相對論的兩個基本原理是:一,等效原理:慣性力場與引力場的動力學效應是局部不可分辨的;二,廣義相對性原理:所有的物理定律在任何參考系中都取相同的形式。
等效原理:分為弱等效原理和強等效原理,弱等效原理認為慣性力場與引力場的動力學效應是局部不可分辨的。強等效原理認為,則將“動力學效應”提升到“任何物理效應”。要強調,等效原理僅對局部慣性系成立,對非局部慣性系等效原理不一定成立。
廣義相對性原理:物理定律的形式在一切參考系都是不變的。該定理是狹義相對性原理的推廣。在狹義相對論中,如果我們嘗試去定義慣性系,會出現死循環:一般地,不受外力的物體,在其保持靜止或勻速直線運動狀態不變的坐標系是慣性系;但如何判定物體不受外力?回答只能是,當物體保持靜止或勻速直線運動狀態不變時,物體不受外力。很明顯,邏輯出現了難以消除的死循環。這說明對於慣性系,人們無法給出嚴格定義,這不能不說是狹義相對論的嚴重缺憾。為了解決這個問題,愛因斯坦直接將慣性系的概念從相對論中剔除,用“任何參考系”代替了原來狹義相對性原理中“慣性系”。
廣義相對論是基於狹義相對論的。如果後者被證明是錯誤的,整個理論的大廈都將垮塌。
為了理解廣義相對論,我們必須明確質量在經典力學中是如何定義的。首先,讓我們思考一下質量在日常生活中代表什麼。“它是重量”?事實上,我們認為質量是某種可稱量的東西,正如我們是這樣度量它的:我們把需要測出其質量的物體放在一架天平上。我們這樣做是利用了質量的什麼性質呢?是地球和被測物體相互吸引的事實。這種質量被稱作“引力質量
”(m1:m2=F1:F2)。我們稱它為“引力的”是因為它決定了宇宙中所有星星和恆星的運行:地球和太陽間的引力質量驅使地球圍繞後者作近乎圓形的環繞運動。
試著在一個平面上推你的汽車。你不能否認你的汽車強烈地反抗著你要給它的加速度。這是因為你的汽車有一個非常大的質量。移動輕的物體要比移動重的物體輕鬆。質量也可以用另一種方式定義:“它反抗加速度”。這種質量被稱作“慣性質量”(m=F/a,注:這不是牛頓定律,只是一種測量質量的方法)。
等效原理
愛因斯坦提出“等效原理”,即引力和慣性力是等效的。這一原理建立在引力質量與慣性質量的等價性上。根據等效原理,愛因斯坦把狹義相對性原理推廣為廣義相對性原理,即物理定律的形式在一切參考系都是不變的。物體的運動方程即該參考系中的測地線方程。測地線方程與物體自身固有性質無關,只取決於時空局域幾何性質。而引力正是時空局域幾何性質的表現。物質質量的存在會造成時空的彎曲,在彎曲的時空中,物體仍然順著最短距離進行運動(即沿著測地線運動——在歐氏空間中即是直線運動),如地球在太陽造成的彎曲時空中的測地線運動,實際是繞著太陽轉,造成引力作用效應。正如在彎曲的地球表面上,如果以直線運動,實際是繞著地球表面的大圓走。
幾何基礎
引力是時空局域幾何性質的表現。雖然廣義相對論是愛因斯坦創立的,但是它的數學基礎的源頭可以追溯到歐氏幾何的公理和數個世紀以來為證明歐幾里德第五公設(即平行線永遠保持等距)所做的努力,這方面的努力在羅巴切夫斯基、波爾約、高斯的工作中到達了頂點:他們指出歐氏第五公設是不能用前四條公設證明的。非歐幾何的一般數學理論是由高斯於1827年完成的(1828年發表),他在研究曲面的性質時不再藉助外圍空間,而直接將曲面作為研究對象,創立了曲面的“內蘊”幾何學。1854年,高斯的學生黎曼將高斯的內蘊幾何學推廣到高維空間,建立起任意維度的彎曲空間的幾何學基礎,被稱為黎曼幾何,在愛因斯坦發展出廣義相對論之前,絕大多數人認為非歐幾何是無法套用到真實世界中來的。
愛因斯坦場方程以及史瓦西解
在廣義相對論中,引力的作用被“幾何化”——即是說:狹義相對論的閔氏空間背景加上萬有引力的物理圖景在廣義相對論中變成了黎曼空間背景下不受力(假設沒有電磁等相互作用)的自由運動的物理圖景,其動力學方程與自身質量無關而成為測地線方程。
水星近日點進動
1859年,天文學家勒威耶(Le Verrier)發現水星近日點進動的觀測值,比根據牛頓定律計算的理論值每百年快38角秒。他猜想可能在水星以內還有一顆小行星,這顆小行星對水星的引力導致兩者的偏差。可是經過多年的搜尋,始終沒有找到這顆小行星。1882年,紐康姆(S.Newcomb)
經過重新計算,得出水星近日點的多餘進動值為每百年43角秒。他提出,有可能是水星因發出黃道光的瀰漫物質使水星的運動受到阻力。但這又不能解釋為什麼其他幾顆行星也有類似的多餘進動。紐康姆於是懷疑引力是否服從平方反比定律。後來還有人用電磁理論來解釋水星近日點進動的反常現象,都未獲成功。
1915年,愛因斯坦根據廣義相對論把行星的繞日運動看成是它在太陽引力場中的運動,由於太陽的質量造成周圍空間發生彎曲,使行星每公轉一周近日點進動為:
ε=24π2a2/T2c2(1-e2)
其中a為行星軌道的長半軸,c為光速,以cm/s表示,e為偏心率,T為公轉周期。對於水星,計算出ε=43″/百年,正好與紐康姆的結果相符,一舉解決了牛頓引力理論多年未解決的懸案。這個結果當時成了廣義相對論最有力的一個證據。水星是最接近太陽的內行星。離中心天體越近,引力場越強,時空彎曲的曲率就越大。再加上水星運動軌道的偏心率較大,所以進動的修正值也比其他行星為大。後來測到的金星,地球和小行星伊卡魯斯的多餘進動跟理論計算也都基本相符。
死亡電梯
讓我們假想一個在摩天大樓內部自由下落的電梯,裡面有一個蠢人。 這人讓他的表和手絹同時落下。會發生什麼呢?對於一個電梯外以地球為參照系的人來說,表、手絹、人和電梯正以完全一致的速度下落。(讓我們複習一下:依據等同性原理,引力場中物體的運動不依賴於它的質量。)所以表和地板,手絹和地板,人和表,人和手絹的距離固定不變。因此對於電梯裡的人而言,表和手絹將呆在他剛才扔它們的地方。 如果這人給他的手錶或他的手絹一個特定的速度,它們將以恆定的速度沿直線運動。電梯表現得像一個伽利略系。然而,這不會永遠持續下去。遲早電梯都會撞碎,電梯外的觀察者將去參加一個意外事故的葬禮。 我們來做第二個理想化的試驗:我們的電梯遠離任何大質量的物體。比如,正在宇宙深處。我們的大蠢蛋從上次事故中逃生。他在醫院呆了幾年後,決定重返電梯。突然一個生物開始拖動這個電梯。經典力學告訴我們:恆力將產生恆定的加速度。(由於一個物體的質量隨速度的增加而增大,所以為了產生恆定的加速度,所加的恆力也必須隨質量的增大而增大。當物體的速度接近光速時,物體的質量將趨於無限大。)由此,電梯在伽利略系中將有一個加速運動。 我們的天才傻瓜呆在電梯裡讓他的手絹和手錶下落。電梯外伽利略系中的人認為手錶和手絹會撞到地板上。這是由於地板因其加速度而向它們(手絹和手錶)撞過來。事實上,電梯外的人將會發現表和地板以及手絹和地板間的距離以相同的速率在減小。另一方面,電梯裡的人會注意到他的手錶和手絹有相同的加速度,他會把這歸因於引力場。 這兩種解釋看起來似乎一樣:一邊是一個加速運動,另一邊是一致的運動和引力場。 讓我們再做一個實驗來證明引力場的存在。一束光通過窗戶射在對面的牆上。我們的兩位觀察者是這樣解釋的: 在電梯外的人告訴我們:光通過窗戶以恆定的速度(當然了!)沿一條直線水平地射進電梯,照在對面的牆上。但由於電梯正在向上運動,所以光線的照射點應在此入射點稍下的位置上。 電梯裡的人說:我們處於引力場中。由於光沒有質量,它不會受引力場的影響,它會恰好落在入射點正對的點上。 噢!問題出現了。兩個觀察者的意見不一致。然而在電梯裡的人犯了個錯誤。他說光沒有質量,但光有能量,而能量有一個質量(記住一焦耳能量的質量是:M=E/C^2)因此光將有一個向地板彎曲的軌跡,正象外部的觀察者所說的那樣。 由於能量的質量極小(C^2=300,000,000×300,000,000),這種現象只能在非常強的引力場附近被觀察到。這已經被證實:由於太陽的巨大質量,光線在靠近太陽時會發生彎曲。這個試驗是愛因斯坦理論(廣義相對論)的首次實證。
結論
從所有這些實驗中我們得出結論:通過引入一個引力場我們可以把一個加速系視為伽利略系。將其引伸,我們認為它對所有的運動都適用,不論它們是旋轉的(向心力被解釋為引力場)還是不均勻加速運動(對不滿足黎曼(Riemann)條件的引力場通過數學方法加以轉換)。你看,廣義相對論與實踐處處吻合。 上述例子取自 “L'évolution des idées en Physique” 愛因斯坦和 Leopold Infeld 著。
引力透鏡
愛因斯坦十字:同一個天體在引力透鏡效應下的四個成像 引力場中光線的偏折效應是一類新的天文現象的原因。當觀測者與遙遠的觀測天體之間還存在有一個大質量天體,當觀測天體的質量和相對距離合適時觀測者會看到多個扭曲的天體成像,這種效應被稱作引力透鏡。受系統結構、尺寸和質量分布的影響,成像可以是多個,甚至可以形成被稱作愛因斯坦環的圓環,或者圓環的一部分弧。最早的引力透鏡效應是在1979年發現的,至今已經發現了超過一百個引力透鏡。即使這些成像彼此非常接近以至於無法分辨——這種情形被稱作微引力透鏡——這種效應仍然可通過觀測總光強變化測量到,很多微引力透鏡也已經被發現。
引力波
藝術家的構想圖:雷射空間干涉引力波探測器LISA對脈衝雙星的觀測是間接證實引力波存在的有力證據(參見上文軌道衰減一節)。已經有相當數量的地面引力波探測器投入運行,最著名的是GEO600、LIGO(包括三架雷射干涉引力波探測器)、TAMA300和VIRGO;而美國和歐洲合作的空間雷射干涉探測器LISA正處於開發階段,其先行測試計畫LISA探路者(LISAPathfinder)於2009年底之前正式發射升空。 美國科研人員2016年2月11日宣布,他們利用雷射干涉引力波天文台(LIGO)於去年9月首次探測到引力波。 研究人員宣布,當兩個黑洞於約13億年前碰撞,兩個巨大質量結合所傳送出的擾動,於2015年9月14日抵達地球,被地球上的精密儀器偵測到。證實了愛因斯坦100年前所做的預測。 對引力波的探測將在很大程度上擴展基於電磁波觀測的傳統觀測天文學的視野,人們能夠通過探測到的引力波信號了解到其波源的信息。這些從未被真正了解過的信息可能來自於黑洞、中子星或白矮星等緻密星體,可能來自於某些超新星爆發,甚至可能來自宇宙誕生極早期的暴漲時代的某些烙印,例如假想的宇宙弦。
黑洞和其它
基於廣義相對論理論的計算機模擬一顆恆星坍縮為黑洞並釋放出引力波的過程廣義相對論預言了黑洞的存在,即當一個星體足夠緻密時,其引力使得時空中的一塊區域極端扭曲以至於光都無法逸出。在當前被廣為接受的恆星演化模型中,一般認為大質量恆星演化的最終階段的情形包括1.4倍左右太陽質量的恆星演化為中子星,而數倍至幾十倍太陽質量的恆星演化為恆星質量黑洞。具有幾百萬倍至幾十億倍太陽質量的超大質量黑洞被認為定律性地存在於每個星系的中心,一般認為它們的存在對於星系及更大的宇宙尺度結構的形成具有重要作用。 在天文學上緻密星體的最重要屬性之一是它們能夠極有效率地將引力能量轉換為電磁輻射。恆星質量黑洞或超大質量黑洞對星際氣體和塵埃的吸積過程被認為是某些非常明亮的天體的形成機制,著名且多樣的例子包括星系尺度的活動星系核以及恆星尺度的微類星體。在某些特定場合下吸積過程會在這些天體中激發強度極強的相對論性噴流,這是一種噴射速度可接近光速的且方向性極強的高能等離子束。在對這些現象進行建立模型的過程中廣義相對論都起到了關鍵作用,而實驗觀測也為支持黑洞的存在以及廣義相對論做出的種種預言提供了有力證據。 黑洞也是引力波探測的重要目標之一:黑洞雙星的合併過程可能會輻射出能夠被地球上的探測器接收到的某些最強的引力波信號,並且在雙星合併前的啁啾信號可以被當作一種“標準燭光”從而來推測合併時的距離,並進一步成為在大尺度上探測宇宙膨脹的一種手段。而恆星質量黑洞等小質量緻密星體落入超大質量黑洞的這一過程所輻射的引力波能夠直接並完整地還原超大質量黑洞周圍的時空幾何信息。
愛因斯坦 1915 年 36 歲發明 廣義相對論 時, 還沒有像後來那麼出名, 但已是科學界的一顆明星。 他剛剛受聘於柏林歐洲最負盛名的機構, 是普魯士科學院 (Prussian Academy of Sciences) 最年輕的成員, 在科學上已經有許多重大的貢獻。
2016年11月13日 · 廣義相對論、狹義相對論這兩個詞很熟,但真正在講什麼、有什麼意義卻講不出來?讓愛因斯坦本人來幫你上相對論這門課!
相對論 (英語:Theory of relativity)是關於 時空 和 引力 的理論,主要由 愛因斯坦 創立,依其研究對象的不同可分為 狹義相對論 和 廣義相對論。 相對論和 量子力學 的提出給物理學帶來了革命性的變化,它們共同奠定了現代物理學的基礎。 相對論極大地改變了人類對 宇宙 和 自然 的“常識性”觀念,提出了“同時的相對性”、“ 四維 時空”、“ 彎曲時空 ”等全新的概念。 不過近年來,人們對於物理理論的分類有了一種新的認識——以其理論是否是決定論的來劃分經典與非經典的物理學,即“非經典的=量子的”。 在這個意義下,相對論仍然是一種經典的理論。 基本介紹. 中文名:相對論. 外文名:Relativity. 提出者:阿爾伯特·愛因斯坦. 提出時間:1905年、1915年.