雅虎香港 搜尋

搜尋結果

  1. 二项式定理 (英語: Binomial theorem)描述了 二项式 的 幂 的 代数 展开。. 根据该定理,可以将两个数之和的整数次幂诸如 展开为类似 项之和的 恒等式,其中 、 均为非负整数且 。. 系数 是依赖于 和 的正整数。. 当某项的指数为0时,通常略去不写。. 例如: [1 ...

  2. 二項式定理 (英語: Binomial theorem)描述了 二項式 的 冪 的 代數 展開。 根據該定理,可以將兩個數之和的整數次冪諸如 展開為類似 項之和的 恆等式,其中 、 均為非負整數且 。 係數 是依賴於 和 的正整數。 當某項的指數為0時,通常略去不寫。 例如: [1] 中的係數 被稱為 二項式係數,記作 或 (二者值相等)。 二項式定理可以推廣到任意實數次冪,即 廣義二項式定理[2]。 歷史. [編輯] 參見: 帕斯卡三角形. 二項式係數的三角形排列通常被認為是法國數學家 布萊茲·帕斯卡 的貢獻,他在17世紀描述了這一現象 [3]。 但早在他之前,就曾有數學家進行類似的研究。 例如,古希臘數學家 歐幾里得 於公元前4世紀提到了指數為2的情況 [4][5]。

  3. In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial ( x + y ) n into a sum involving terms of the form ax b y c , where the exponents b and c are nonnegative integers with b + c = n , and the coefficient a ...

  4. Revision notes on 4.1.1 Binomial Expansion for the CIE A Level Maths: Pure 1 syllabus, written by the Maths experts at Save My Exams.

  5. 2023年5月11日 · The general binomial expansion applies for all real numbers, n ∈ℝ. Usually fractional and/or negative values of n are used. It is derived from (a + b) n, with a = 1 and b = x. a = 1 is the main reason the expansion can be reduced so much. Unless n ∈ ℕ, the expansion is infinitely long. It is only valid for |x| < 1.

  6. Binomial Theorem. A binomial is a polynomial with two terms. example of a binomial. What happens when we multiply a binomial by itself ... many times? Example: a+b. a+b is a binomial (the two terms are a and b) Let us multiply a+b by itself using Polynomial Multiplication : (a+b) (a+b) = a2 + 2ab + b2.

  7. Proving that two numbers are equal by showing that the both count the numbers of elements in one common set, or by proving that there is a bijection between a set counted by the rst number and a set counted by the second, is called either a combinatorial proof or a bijective proof. Proposition 1.1. Let n; k 2 N+ with 0 < k < n. We have. n = 1. n 1.