雅虎香港 搜尋

搜尋結果

  1. 2024年4月23日 · 海王星紅線在地球每運行164.79圈時繞太陽中心運行一周淺藍色物體代表天王星 海王星與太陽之間的平均距離為45億公里(30.1天文單位)。海王星的軌道週期(年)大約相當於164.79地球年,並有著±0.1年的變動 [2]。

  2. 海王星紅線在地球每運行164.79圈時繞太陽中心運行一周淺藍色物體代表天王星 海王星與太陽之間的平均距離為45億公里30.1天文單位)。海王星的轨道周期大约相当于164.79地球年並有着±0.1年的變動 [2]。

    • Neptunian
    • 4,553,946,490 km, 30.44125206 AU
    • 1846年9月23日
    • 概览
    • 发现
    • 命名
    • 星体运动
    • 物理特性
    • 大气层
    • 磁层
    • 光环
    • 卫星
    • 形成与迁移

    [hǎi wáng xīng]

    太阳系八大行星之一

    海王星(英语:Neptune,天文符号:♆)是太阳系八大行星之一,也是已知太阳系中离太阳最远的大行星。海王星的轨道半长轴为30.07天文单位,公转周期为164.8年,质量为17.147地球质量(第3位,比它的近邻天王星稍大),半径为3.86地球半径(第4位) [1]。

    海王星的视星等最高约为7.67等,需要借助天文望远镜才能观察 [2]。海王星对肉眼呈蓝色,西方人据此按罗马神话中的海神尼普顿(Neptune)的名字而命名。李善兰等人于1859年翻译《谈天》时,将其中文译文定为海王星

    海王星的大气层的化学组成以氢分子和氦为主。此外,海王星大气中还有微量的甲烷,这是使行星呈蓝色的原因之一。海王星有着强烈的风暴,测量到的风速高达2400km/h。海王星云顶温度是-218摄氏度(55K),比天王星云顶温度稍高。据推测,海王星很可能有一个炽热的内部,其核心的温度约7000℃,和大多数已知的行星相似。海王星的质量稍大于天王星,密度稍大于天王星,而半径稍小于天王星。

    海王星在1846年9月23日被发现,是仅有的利用数学预测而非观测意外发现的行星。天文学家利用天王星轨道的摄动推测出海王星的存在与可能的位置。迄今只有美国国家航空航天局的旅行者2号探测器曾经在1989年8月25日飞掠过海王星

    在最早的观测记录中,伽利略·伽利雷(Galileo di Vincenzo Bonaulti de Galilei)在1612年12月28日首度观测并描绘出海王星,1613年1月27日又再次观测,但因为观测的位置在夜空中都靠近木星(海王星与木星处在合的位置),这两次机会伽利略都误认海王星是一颗恒星。因此,海王星的发现并不归功于他。1612年12月,他第一次观测海王星时,海王星在天空中几乎是静止的,因为那天它刚好逆行了。这种明显的反向运动是当地球的轨道经过一颗外行星时产生的。因为海王星才刚刚开始它的年度逆行周期,这颗行星的运动太微弱了,伽利略的小型望远镜无法观测到。2009年,墨尔本大学的物理学家大卫·杰美生宣称,有新的证据表明伽利略至少知道他看见的星星相对于背景的恒星有微量的相对运动。

    在1821年,法国天文学家亚历斯·布瓦尔(Alexis Bouvard)出版了天王星的轨道表,随后的观测显示出与表中的位置有越来越大的偏差,使得布瓦尔假设有一个摄动体存在。在1843年约翰·柯西·亚当斯计算出会影响天王星运动的第八颗行星轨道,并将计算结果告知皇家天文学家乔治·艾里,他问了亚当斯一些计算上的问题,亚当斯虽然草拟了答案但未曾回复。在1846年,法国工艺学院的天文学教师奥本·勒维耶(Urbain Le Verrier)在得不到同行的支持下,以自己的热诚独立完成了海王星位置的推算。但是,在同一年,约翰·赫歇耳也开始拥护以数学的方法去搜寻行星,并说服詹姆斯·查理士着手进行。在多次耽搁之后,查理士在1846年7月勉强开始了搜寻的工作;而在同时,勒维耶也说服了柏林天文台的约翰·格弗里恩·伽勒(Johann Gottfried Galle)搜寻行星。当时仍是柏林天文台的学生达赫斯特(Heinrich d'Arrest)表示正好完成了勒维耶预测天区的最新星图,可以作为寻找新行星时与恒星比对的参考图。在1846年9月23日晚间,海王星被发现了,与勒维耶预测的位置相距不到1°,但与亚当斯预测的位置相差10°。事后,查理士发现他在8月时已经两度观测到海王星,但因为对这件工作漫不经心而未曾进一步的核对。

    在发现之后的一段时间,海王星不是被称为“天王星外的行星”就是“勒维耶的行星”。伽雷是第一位建议取名的人,他建议的名称是Janus(雅努斯,罗马神话中看守门户的双面神)。在英国,查理士将之命名为Oceanus;在法国,阿拉贡(François Arago)建议称为勒维耶,以回应法国之外强烈的抗议声浪。

    法国天文年历当时以赫歇耳称呼天王星,相对于以勒维耶称呼这颗新发现的行星。同时,在分开和独立的场合,亚当斯建议修改天王星的名称为乔治,而勒维耶经由经度委员会建议以Neptune作为新行星的名字。斯特鲁维(Struve)在1846年12月29日于圣彼得堡科学院挺身而出支持勒维耶建议的名称。

    很快的,海王星成为国际上被接受的新名称。在罗马神话中的Neptune(尼普顿)等同于希腊神话的Poseidon(波塞冬),都是海神,因此中文翻译成海王星。新发现的行星遵循了行星以神话中的众神为名的原则,而除了天王星之外,都是在远古时代就被命名的。中文及韩文、日文和越南文的汉字写法都是“海王星”。在印度,这颗行星的名称是Varuna(Devanāgarī),也是印度神话中的海神,与希腊-罗马神话中Poseidon或Neptune的意义是相同的。在蒙古,海王星称为Dalain Van(Далайнван),反映了其同名神的角色是大海的统治者。在现代希腊,人们仍旧将海王星称为波塞冬(Ποσειδώνας,Poseidonas)。在希伯来语中,2009年希伯来语学院投票将海王星的名称称为רהב(Rahab),来自《圣经》中提到的海怪,尽管现有的拉丁词Neptun(נפטון)更为常用。在纳瓦特尔语中,海王星被以雨神Tlāloc的名字命名为Tlāloccītlalli。

    从1846年发现海王星到1930年发现冥王星之前,海王星是已知最远的行星。当冥王星被发现时,冥王星被认为是一颗行星,因此海王星成为已知的第二远的行星,除了在1979年到1999年之间,冥王星的椭圆轨道使它比海王星离太阳更近。1992年柯伊伯带的发现导致许多天文学家争论冥王星应该被认为是一颗行星还是柯伊伯带的一部分。2006年,国际天文联合会首次定义了“行星”一词,将冥王星踢除太阳系重新归类为“矮行星”,使海王星再次成为太阳系最外层的行星。

    公转

    海王星与太阳之间的平均距离为45亿公里,约30.1个天文单位(AU)。海王星的轨道周期(年)大约相当于164.79地球年,轨道倾角约为1.77°。海王星于2011年7月12日回到绕日公转轨道上它被发现时的那个点。由于地球处于其365.25天周期轨道的不同地点,届时从地球看到的海王星并不会处在它被发现时在天空中的那个位置。从地球上观察,海王星冲日周期为367天,这些周期使它在2010年4月和7月以及2011年10月和11月接近1846年它被发现时的坐标。在2010年8月20日,海王星于发现它的1846年中的同一天再度冲日。

    自转

    海王星的轴向倾角为28.32°,与地球(23°)和火星(25°)的倾角相似,因此,海王星经历了与地球相似的季节变化。海王星的长轨道周期意味着四季持续40地球年。海王星的自转周期(日)是15小时57分59秒。 因为海王星不是一个固体,它的大气层会发生差速旋转。宽赤道带的自转周期约为18小时,比星体磁场的16.1小时自转慢。相反,在极性区域,旋转周期为12小时,反之亦然。海王星的较差自转是太阳系中最明显的,它会导致强烈的纬向风切变。

    质量

    海王星的质量为1.0247e+26千克,是介于地球和巨行星(指木星和土星)之间的中等大小行星:它的质量是地球质量的17倍,是木星质量的1/18。因为它们质量较典型类木行星小,而且密度、组成成分、内部结构也与类木行星有显著差别,海王星和天王星一起常常被归为类木行星的一个子类:冰巨星。在太阳系外行星研究领域,海王星被用作一个通用代号,指所发现的有着类似海王星质量的系外行星,就如同天文学家们常常说的那些系外“木星”。

    温度

    因为轨道距离太阳很远,海王星从太阳得到的热量很少,所以海王星大气层顶端温度只有-218℃(55K),而由大气层顶端向内温度稳定上升。和天王星类似,星球内部热量的来源仍然是未知的,而结果却是显著的:作为太阳系最外侧的行星,海王星内部能量却大到维持了太阳系所有行星系统中已知的最高速风暴。对其内部热源有几种解释,包括行星内核的放射热源,行星生成时吸积盘塌缩能量的散热,还有重力波对平流圈界面的扰动。

    成分

    海王星内部结构和天王星相似。行星核是一个质量大概不超过一个地球质量的由岩石和冰构成的混合体。海王星地幔总质量相当于10到15个地球质量,富含水,氨,甲烷和其它成分。作为行星学惯例,这种混合物被叫作冰,虽然其实是高度压缩的过热流体。这种高电导的流体通常也被叫作水-氨海洋。大气层包括大约从顶端向中心的10%到20%,高层大气主由80%氢和19%氦组成。甲烷,氨和水的含量随高度降低而增加。更内部大气底端温度更高,密度更大,进而逐渐和行星地幔的过热液体混为一体。海王星内核的压力是地球表面大气压的数百万倍通过比较转速和扁率可知海王星的质量分布不如天王星集中。

    海王星的大气占总质量的5%到10%,并向核心延伸了约10%到20%。在高海拔处,海王星的大气层80%是氢,19%是氦,也存在着微量的甲烷。主要的吸收带位于600纳米以上波长的红色和红外线的光谱位置。与天王星比较,它的吸收是大气层的甲烷部分,使海王星呈现介于蓝色和绿色之间的淡青色,时而偏蓝,时而偏绿。海王星的大气层可以细分为两个主要的区域:低层的对流层,该处的温度随高度降低;和平流层,该处的温度随着高度增加。两层之间的边界,对流层在气压为0.1巴(10kPa,1巴=0.1MPa=100kPa,约等于地球上1个标准大气压)处。平流层在气压低于10至10微巴(1至10Pa)处成为热成层,热成层逐渐过渡为散逸层。

    模型表明海王星对流层的云带取决于不同海拔高度的成分。高海拔的云出现于气压低于1帕之处,该处的温度使甲烷可以凝结。压力在1巴至5巴(100kPa至500kPa),被认为氨和硫化氢的云可以形成。压力在5巴以上,云可能包含氨、硫化氨、硫化氢和水。更深处的水冰云可以在压力大约为50巴(5MPa)处被发现,该处的温度达到0℃。在其下面,可能会发现氨和硫化氢的云。海王星高层的云会曾经被观察到在低层云的顶部形成阴影,高层的云也会在相同的纬度上环绕着行星运转。这些环带的宽度大约在50至150千米,并且在低层云顶之上50至110千米。海王星的光谱显示平流层的低层是朦胧的,这是因为紫外线造成甲烷光解的产物,例如乙烷和乙炔,凝结。平流层也是微量的一氧化硫和氰化氢的来源海王星的平流层因为碳氢化合物的浓度较高,也比天王星的温暖。

    海王星有着与天王星类似的磁层,它的磁场相对自转轴有着高达47°的倾斜,并且偏离核心至少0.55半径,或是偏离物理上的中心13500千米。在航海家2号抵达海王星之前,天王星的磁层倾斜假设是因为它躺着自转的结果,但是,比较这两颗行星的磁场,科学家认为这种极端的指向是行星内部流体的特征。这个区域也许是一层导电体液体(可能是氨、甲烷和水的混合体)形成的对流层流体运动,造成发电机的活动。磁场的偶极成分在海王星的磁赤道大约是14微特斯拉(0.14高斯)海王星的偶磁矩大约是2.2×10T·m(14μT·RN,此处RN是海王星的半径)海王星的磁场因为非偶极成分,包括强度可能超过磁偶极矩的强大四极矩,组合有很大的贡献,因此在几何结构上非常的复杂。相较之下地球、木星和土星的四极矩都非常小,并且相对于自转轴的倾角也都不大海王星巨大的四极矩也许是发电机偏离行星的中心和几何强制性的结果。

    海王星的弓形激波,在那儿磁层开始减缓太阳风的速度,发生在距离行星34.9行星半径之处。磁层顶,磁层的压力抵销太阳风的地方,位于23~26.5倍海王星半径之处,磁尾至少延伸至72倍的海王星半径,并且还会伸展至更远。

    海王星也有光环。在地球上只能观察到暗淡模糊的圆弧,而非完整的光环。但旅行者2号的图像显示这些弧完全是由亮块组成的光环。其中的一个光环看上去似乎有奇特的螺旋形结构。同天王星和木星一样,海王星的光环十分暗淡,但它们的内部结构仍是未知数。人们已命名了海王星的光环:最外面的是Adams(它包括三段明显的圆弧,今已分别命名为自由Liberty,平等Equality和友爱Fraternity),其次是一个未命名的包有Galatea卫星的弧然后是Leverrier(它向外延伸的部分叫作Lassell和Arago),最里面暗淡但很宽阔的叫Galle。 [15]这颗蓝色行星有着暗淡的天蓝色圆环,但与土星比起来相去甚远。当这些环由以爱德华·奎南为首的团队发现时曾被认为也许是不完整的。然而,“旅行者2号”的发现表明并非如此。这些行星环有一个特别的“堆状”结构。其起因如今不明,但也许可以归结于附近轨道上的小卫星的引力相互作用。

    20世纪80年代中期,认为海王星环不完整的证据首次出现,当时观测到海王星在掩星前后出现了偶尔的额外“闪光”旅行者2号在1989年拍摄的图像发现了这个包含几个微弱圆环的行星环系统,从而解决了这个问题。最外层的圆环,亚当斯,包含三段显著的弧,如今名为“Liberté”,“Egalité”和“Fraternité”(自由、平等、博爱)。弧的存在非常难于理解,因为运动定律预示弧应在不长的时间内变成分布一致的圆环。如今认为环内侧的卫星海卫六的引力作用束缚了弧的运动。 [17]旅行者2号的相机发现了其他几个环。除了狭窄的、距海王星中心63000千米的亚当斯环之外,勒维耶环距中心53000千米,更宽、更暗的伽勒环距中心42000千米。勒维耶环外侧的暗淡圆环被命名为拉塞尔;再往外是距中心57000千米的Arago环。 [17]2005年新发表的在地球上观察的结果表明,海王星的环比原先以为的更不稳定。凯克天文台

    海王星有14颗已知的天然卫星。 [18]海卫一是仅有的一颗大型卫星,被威廉·拉塞尔发现于发现海王星17天后,与其他大型卫星不同,海卫一运行于逆行轨道,说明它是被海王星俘获的,大概曾经是一个柯伊伯带天体。它与海王星的距离足够近使它被锁定在同步轨道上,它将缓慢地经螺旋轨道接近海王星,当它到达洛希极限时最终将被海王星的引力撕开。海卫一是太阳系中被测量的最冷的天体,温度为-235℃(38K)。海王星第二个已知卫星(依距离排列)是形状不规则的海卫二,它的轨道是太阳系中离心率最大的卫星轨道之一。从1989年7月到9月,“旅行者2号”发现了六个新的海王星卫星。其中形状不规则的海卫八以拥有在其密度下不会被它自身的引力变成球体的最大体积而出名。尽管它是质量第二大的海王星卫星,它只是海卫一质量的1/400。最靠...

    冰质巨行星海王星和天王星的形成,已经证明很难精确模拟。模型表明,太阳系外部区域的物质密度太低,无法用传统的核心吸积方法来解释如此大的天体的形成,因而人们提出了各种假说来解释它们的形成。一种说法是,冰巨星不是由核心吸积形成的,而是由原行星盘内的不稳定性形成的,后来它们的大气层被附近一颗大质量OB型星的辐射炸飞了,其中一部分形成了天王星和海王星

    另一个假说是,它们在离太阳更近的地方形成,那里的物质密度更高,然后在移除气态原行星圆盘之后迁移到它们当前的轨道上。这种形成后迁移的假设是有利的,因为它能够更好地解释在跨海王星区域观察到的小型天体的构成比例。最为广泛接受的对这个假设细节的解释被称为尼斯模型,它探索了迁移的海王星和其他巨行星对柯伊伯带结构的影响。右图是一个显示外行星和柯伊伯带的模拟:(a)在木星和土星达到2:1共振之前;(b)在海王星轨道移动后柯伊伯带物体向内散射后;(c)在木星射出散射的柯伊伯带天体之后。

  3. 2024年4月23日 · 海王星红线在地球每运行164.79圈时绕太阳中心运行一周浅蓝色物体代表天王星 海王星与太阳之间的平均距离为45亿公里(30.1天文单位)。海王星的轨道周期(年)大约相当于164.79地球年,并有着±0.1年的变动 [2]。

  4. 2024年5月5日 · 海王星探索離太陽最遠的行星!. 2024年5月5日. ~14 min. 題目: 行星和衛星. © Vito Technology, Inc. 海王星是離太陽的第八顆行星從地球上用肉眼是看不到的。. 這顆遙遠的藍色行星有光環衆多的衛星並沒有固體表面。. 在本文中我們將告訴您更多關于海王星的 ...

  5. 2024年5月5日 · 海王星的半径为24,622公里,它是太阳系中第四大行星,也是最小的巨行星。它的表面积为76亿平方公里;要绕海王星的赤道旅行,需要行驶154,705公里的距离。 海王星可以容纳多少地球? 海王星的半径为24,622公里,大约是地球半径的四倍。

  6. Dark, cold and whipped by supersonic winds, giant Neptune is the eighth and most distant major planet orbiting our Sun. More than 30 times as far from the Sun as Earth, Neptune is not visible to the naked eye. In 2011, Neptune completed its first 165-year orbit since its discovery. The planet’s rich blue color comes from methane in its ...

  7. 其他人也問了

  1. 其他人也搜尋了